
Game Theoretic Modeling
of Patrolling Stackelberg Games for MAS

Emma Chabane and Vinh Le
16.412/6.834 Grand Challenge - Spring 2022

Abstract

With Bayesian Stackelberg games we can frame a pa-
trolling scenario as a solvable problem. Normally, those
who are patrolling are at a direct disadvantage compared
to those who are trying to attack, since they have to
make their move first and they can be observed. How-
ever, this exact scenario can be framed as a Stackelberg
game where the leader is the security doing patrol and
the follower is an attacker. While accounting for pos-
sible attacker types, the optimal policy for the leader
is solved for using a Decomposed Optimized Bayesian
Stackelberg Solver. For games where number of valu-
ables, length of patrol, or number of attacker types re-
mains under 5, the game is solved on average under .10
seconds.

Motivation
Security technological innovations have recently been a
prevalent area of interest for many researchers. In the wake
of new various threats in the 21st century, developing best re-
sponses to security attacks has been a critical concern in the
United States and the world. For our team, security problems
were quite an interesting topic to look at. Indeed, we were
hoping to develop our knowledge of game theoretic model-
ing, while also studying an area that could truly be helpful to
society. Because of the diverse amount of security and safety
scenarios that exist nowadays, from defending infrastructure
to protecting flora and fauna, this domain is truly interest-
ing. Often, security scenarios involve various adversarial ac-
tors with different goals in mind, and complex variables that
need to be taken into account. As such, security scenarios
can be modeled well using Stackelberg security games, and
game theory is well-suited to represent these kinds of sit-
uations. Various research projects have been started using
Stackelberg game modeling for security applications, and
we have been seeing very promising results from our litera-
ture review.

Related Work
We were inspired by research projects that have been studied
and implemented in real-life scenarios. Many applications

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

use Stackelberg games and a solving algorithm to better al-
locate resources, optimize efficiency, and schedule security
checkpoints for instance.

Patrol and resource allocation
The first project we read about was a resource and patrol al-
location project using the A.R.M.O.R. system (Assistant for
Randomized Monitoring over Routes), used by Los Ange-
les International Airport (Pita et al., 2008). In a huge airport
such as LAX, thousands of passengers come by every day
and travel through different kinds of roads and terminals.
Various variables come into play, such as traffic flow, size,
flight type, etc. . . thus making this a complex security prob-
lem.

A key problem that arises in many security scenarios is the
fact that our “defenders” have limited resources (i.e. only so
many patrollers, agents,...). This approach therefore needs to
better allocate the airport’s resources to optimize security in
all the parts of the airport. The goal of this game theoretic
model is to therefore represent the scenario as a Bayesian
Stackelberg game. The airport has different leaders: the air-
port patrollers and K9 dogs, and can be under different kind
of threats (e.g. bombs). A.R.M.O.R. uses the DOBSS algo-
rithm, which we will delve into in the Implementation sec-
tion.

A significant amount of research papers have also focused
on resource allocation for security Stackelberg games, see
Shieh et al. for an overview of this game theoretic modeling
in the context of the US Coast Guard.

Utilizing complex behavioral data to better allocate
resources
A second, and perhaps the one that was initially most inter-
esting to us was the P.A.W.S. algorithm for environmental
and animal protection. The research proposed by Yang et
al. aims to protect endangered species from illegal poach-
ing using an improved and optimized Stackelberg game for-
mulation. The researchers improved their model using be-
havioral data based on the poacher’s heterogenous decision
process. Based on this extension, they were able to improve
their model to a PAWS-Learn framework that betters pre-
dicts where and how poachers will act. By leveraging game
theory and machine learning, PAWS was able to best predict
where attackers will be and help forest rangers protect their



environment. Their method was trialed in Uganda’s Queen
Elizabeth National Park and proved to be quite successful!
Environmental challenges were quite interesting to us as it is
a topic that is quite relevant nowadays and we toyed around
with the idea of creating an environmental protection bot.

Problem statement
Our project was inspired by these different security and pro-
tection concerns. Based on our work from the advanced lec-
ture and our literature review, we wanted to see how game
theoretic modeling could be a solution to these challenges
and explore a novel side of game theory for MAS that we
had not studied before. Previous research we studied often
focused on threats to national and federal infrastructure or on
environmental protection. However, there exists much fre-
quent security threats everywhere in the world: burglaries.
In the United States, there are almost three burglaries every
minute. Therefore, for our Grand Challenge, we ultimately
decided to focus on a robot that can be used by every single
one of us, in an environment familiar to all of us: our own
homes. In this light, our bot approaches security challenges
from a very different angle, and we are excited about apply-
ing our game theory model to scenarios that have not been
studied in liaison with Stackelberg games. As such, in this
paper, we propose Inspecti-bot, a home robot-patroller that
uses Bayesian Stackelberg game modeling to correctly and
efficiently deploy patrol teams to counteract potential adver-
sarial agents.

Background
Up to now, we have mentioned Stackelberg games quite
a bit. What are Stackelberg games, and why are they so
well-suited for security challenges? Generally, a Stackelberg
game is composed of two players: a leader and a follower.
Although this makes it seem like these kind of games can
only represent situations between two people, they can actu-
ally do quite a bit more. Indeed, the leader and the follower
need not represent two individuals, rather, they can represent
adversarial teams, the leader team often being the canonical
“good guys” and defenders, while the follower team are seen
as the threats. Each player has a set of different actions they
can take. For security Stackelberg games, often, these dif-
ferent actions are which places to go to so that a leader can
best intercept a follower (see PAWS and ARMOR), which
is also the case for our application. The leader must first
commit to a strategy before a follower can choose a strat-
egy. As you can imagine, this is quite reflective of real-life
scenarios: before a real life attack, followers will survey a
leader’s strategy and actions to best augment their chances
of winning. Yet, leaders usually only have one type: police
forces, rangers, and patrollers follow a rigorous set of rules
that are not often interchangeable. This makes Stackelberg
games an excellent tool to illustrate security challenges, and
also means researchers have studied how to optimize leader
strategy at length, to give them the best chances of intercept-
ing an attacker.

There are various algorithms that have been used to solve
Stackelberg games: simpler approaches, like the multiple-
LPs algorithms, helps us find the best strategy for normal

Figure 1: A grid world representation of our problem

Stackelberg games by playing a set of optimization prob-
lems. This method is however not as well-suited when we
include randomness in the environment. Frameworks like
PAWS and FORTIFY provide promising results and have
been introduced by research papers, though there unfortu-
nately exists much less resources and algorithmic explana-
tions for those systems.

Method
Scenario modeling
We modeled our scenario as follows (Figure 1): The
Inspecti-bot must continuously protect a house by monitor-
ing its valuables. Valuables are represented by a set of items
of different values, such as a television, a phone, a safe with
money, and a camera. As per the Stackelberg game frame-
work, there are two teams of players: a leader, who is here
the Inspecti-bot, and a follower, the potential attackers or
burglars.

In our advanced lecture, we choose to approximate
POSGs to a smaller set of solvable Bayesian games. Thus,
in our challenge, we chose to extend Stackelberg games
to a Bayesian environment by including randomness of the
player types. Indeed, not all attackers will follow the same
kind of strategy or think in similar ways: there could be
risky attackers, who would rather heighten risk by going for
higher-value items, or attackers that play it safe and go for
lesser-value items which have less risk of being monitored.

Our Inspecti-bot does not know the attacker’s type, but
we must optimize our solution set to find the best strategy in
order to counteract the attacker.

Algorithm choice
Our method of choice was a Decomposed Optimized
Bayesian Stackelberg Solver (DOBSS). DOBSS is a way to
get an exact solution for a Stackelberg game quickly and



Figure 2: DOBSS Algorithm

efficiently. DOBSS is essentially a mixed-integer linear pro-
gram, and we are optimizing for the leader strategy rather
than searching for a Nash Equilibrium. Also, for this im-
plementation we consider only the pure strategies of adver-
saries rather than mixed strategies. The combination of all
these traits leads to a efficient algorithm. X and Q respec-
tively represent sets of leader and follower’s pure strategies.
The leader’s policy is denoted by x. The set of follower
types is denoted by l ∈ L, ql denotes a vector of strate-
gies. Rl and Cl respectively represent payoff matrices for
leader and follower. M is also just a large positive number.
The given a priori probabilities are given as pl. We do the
following change of variables to help linearize the quadratic
programming problem zlij = xiq

l
j . With all these variables

the leader solves this following linear problem (Figure 2).
To make sense of the algorithm above, everything after the
”s.t.” are the constraints to solving our problem. Constraints
1-4 define the set of feasible solutions. Constraints 2 and 5
limit the actions to be a pure distribution over the set Q.

Python implementation

Game Framework
This implementation was done in Python making use of
the PuLP package to solve linear programs1. We had a
script games.py to create the PatrolGame instance which
will contain all the important variables for solving with
DOBSS: m(number of targets), d(length of the patrol/pol-
icy), num attacker types(number of types for follower),
items(list of the valuables), item prob(an a priori list of
probabilities corresponding to each valuable for how likely
an attacker will appear there), attacker types(the types of
attackers), attacker type prob(probabilities for attacker to
be each type). With these variables we can generate the
necessary details for the DOBSS. We generate possible
attacker and defender strategies. And also, we are able to
get attacker and defender payoff matrices.
DOBSS
We first use the PuLP package to set up the linear problem

1https://github.com/vinhle169/Grand-Challenge-
16.412/blob/main/games.py

Figure 3: AWS WorldForge house simulation

to add variables to2. We then set up our objective function
and our constraints. We then define a solver function to
solve the linear problem, and output optimal defender and
attacker strategies.

Demo/Visualizer
Python Visualization For the visualizer, we iterate
through each step in the patrol length. And extract the next
best move from both the attacker and the defender. We then
check for any conflict resolution. In this demo, we don’t re-
set the game after the attacker has been caught. However,
if an attacker successfully takes an item the Defender must
then recalculate its patrol3.

AWS RoboMaker/WorldForge Visualization Using
AWS WorldForge, we were able to create templates for
what potential environments would look like for our
problem (Figure 3). We toyed around with different kind
of environments and made houses with various number of
rooms and objects. We aimed to use those environments,
implement them with our Python implementation, and
simulate them on Gazebo to show how an Inspecti-bot
would move around a house to protect it from potential
attackers, though this turned out more complicated than
expected due to unfamiliarity with the system. With some
help from the Safeti-bot team, we got set up on AWS
RoboMaker and were able to learn a lot about ROS and
simulation/visualization environments, as well as use the
AWS navigation sample files. Figure 4 shows an example of
what WorldForge environments could have looked like on
Gazebo.

2https://github.com/vinhle169/Grand-Challenge-
16.412/blob/main/dobbs.py

3https://github.com/vinhle169/Grand-Challenge-
16.412/blob/main/playstackelberg.py



Figure 4: WorldForge house on Gazebo

Evaluation
We wanted to optimize inspecti-bot to perform well in dif-
ferent kinds of security scenarios, as well as to see how well
we can scale our problem. As such, we ran various simula-
tions and changed the different variables of our problem to
learn more about our robot’s efficiency:

(3, 3, 2) (3, 3, 3) (4, 3, 2) (4, 3, 3) (5, 4, 3)
Acc 0.571% 0.7936 0.619% 0.746 0.766%
Time 4.327 4.95 7.183 9.318 120

Table 1: Results Column Names are formatted as (number
of targets, patrol length, and number of attacker types), Acc
is short for accuracy and Time is in seconds, both stats are
averaged over 20 game playthroughs

The results from table 1 are based off of 20 game av-
erages. We see remarkable performance across different
variations of variables. Any success rate that’s higher than
1/m(random chance) is great, because it is one agent defend-
ing multiple objects. However, even with the 20 games aver-
age per statistic, we think there is still too much randomness
to take the results completely at face value. This is because
the patrol length is only length 3 or 4 and encounter proba-
bility and attacker type probability is also chosen at random.
We think that’s why we see so much variation between the
different variations even though we hypothesized (3,3,2) to
be the best performing(because there is less to defend and
less attacker types to worry about). Another note is that we
see that as soon as number of items reaches 5 and patrol
length reaches 4, the search space explodes and the time it
takes to run this algorithm becomes extremely long. But as
a final note, we do not think this randomness completely de-
tracts away from the value of this algorithm since it overall
still has a much higher than random success rate.

Discussion
Reflections on algorithm research
When we first began our research, we were quite interested
in the topic of Stackelberg games, as they truly seemed like
the best game theoretic framework to approach security and

safety problems. We spent a good amount of time review-
ing literature to see how academics solved these games. We
were able to find a couple research papers that explained so-
lution concepts and efficient algorithms to solve Stackelberg
games. However, most of these explanations gave more ab-
stract mathematical descriptions and not enough details to
go about coding up the algorithm ourselves. This was the
case for algorithms such as HBGS, DOBSS, and multiple-
LPs. Newer research frameworks, like PAWS, were promis-
ing, but they used machine learning classification models,
and we lacked data to train it. We are curious as to what kind
of results we could have gotten if we had been able to use
behavioral data to better optimize, which was the case for
PAWS. We ended up choosing choosing the DOBSS method
because it was well suited for introducing randomness in the
environment. For example, the multiple LPs approach re-
quires changing the method by using a Harsanyi transfor-
mation, which transforms uncertainty over players strategy
sets into uncertainty over their payoffs.

Reflections on Python implementation
It was thus hard for us to find any pseudocode or algorithmic
implementations to go off of. The first code implementation
we found was quite outdated and used packages that had
since been modified. We had trouble modifying that code,
but were thankfully able to find some new open-source code
for DOBSS. This new code provided great help in better un-
derstanding the nuts and bolts of the algorithm, and we were
able to use a new linear optimization package (PuLP). How-
ever, optimization packages are at times buggy and we had
to figure out new ways to assign utility. The Python imple-
mentation we went off of randomly assigned utility, but for
our scenario, the leader knows beforehand what the value of
each item is and should take this into account when making
his choice of where to go. We had to do a lot of brainstorm-
ing to think about how to best modify the DOBSS code im-
plementation to insert the variables and settings we wanted
for our scenario.

Reflections on simulation modeling
Learning about robotic simulation was an exciting topic of
this project, but also proved to be one of the most compli-
cated. These new kind of software and systems were ones
that we were completely unfamiliar with, and navigating
”foreign territory” proved to be much harder than expected.
We first worked on our own to learn how to use RoboMaker
and the Cloud9 IDE, and followed tutorials on how to use
AWS and ROS navigation packages. We ultimately got some
help from our companion subteam to get set up in the collab-
orative AWS environment, which was quite helpful. When
we ran into a lot of troubleshooting and error, we made a
backup demo using Python, which illustrates the main idea
of our work. It would have been nice to fully show that on
Gazebo, but that was a bit complicated for our team and that
was disappointing.

We think working with new systems has taught us a
lot about teamwork and leveraging the resources we have
around us. We think a key insight from this is that we should
not underestimate the amount of time it takes to learn and get



used to a new environment, but we have definitely learned a
lot about robotics and simulation environments. We are hop-
ing to learn more about those in the future, and hopefully get
some simulations running, as it is fun work!

Reflections on game theoretic modeling

We have now spent almost a whole semester studying and
learning about game theoretic modeling. From our advanced
lecture given in March to this challenge, we have amassed a
lot of knowledge about how to model MAS scenarios with
games. This challenge was incredibly interesting. Since we
are focusing on security applications, the kinds of scenarion
that we will encounter are immensely complex. There can be
life threatening situations and usually involve unpredictable
situations

Game theory has been an insightful tool, and makes it
easy to represent complex situations by using different play-
ers, actions, and variables. However, it does fall short in
terms of scalability as runtime tends to grow quite fast when
the number of players, actions, and variables grows. Yet, this
is a key aspect of security scenarios. We cannot assume any-
thing as these kind of situations hold a lot of surprises. In
that light, game theoretic solvers and modeling may not be
the way to approach this problem. We wonder if integrating
machine learning algorithms might be able to help with opti-
mizing the solution space, as it seems that some new frame-
works have had quite successful results by integrating the
both of them.

Further work

We are quite excited and enthusiastic about the work we did
and the new things we learned with this project. However,
we are still curious as to the kinds of improvements we
could make upon our algorithm, or more generally, our
scenario:

1. We made various simplifications in our game, such as
the fact that the defender could only protect one object at a
time. In a real-life scenario, inside of a house, a defender can
protect objects in a specific radius, which could for instance
be a whole room in the house. It would be insightful to
see how we could modify this algorithm to take that into
account.

2. Though this challenge was done at the scale of a house-
hold, we would be curious to see how this could apply to
other kind of burglaries. Interesting examples would be ille-
gal art traffic for instance, and we could model a new sce-
nario using a museum environment, which is much larger in
terms of area, set of items that could be stolen, etc... From
the research we reviewed and the evaluation we did, it seems
there are still difficulties to be able to fully scale Stackelberg
games, and though we are not expert in the field, it would
be quite intriguing to see what kind of modifications or sim-
plifications to be made to be able to computer solutions effi-
ciently.

Conclusion
In conclusion, this Grand Challenge was incredibly re-
sourceful and provided a lot of insights about new ways to
model multi agent systems using game theory. We think our
focus, security applications of games, was a great choice as
it taught us a lot about how to take into account item value/u-
tility, randomness, and player types, especially in the context
of potential infrastructure-threatening and life-threatening
situations. The research that has been done in that area has
been interesting to read and we enjoyed reviewing the differ-
ent methods that have been used so far and for what appli-
cations they were done. Our implementation did a good job
of optimizing strategy and finding solutions to our Bayesian
Stackelberg game scenario for household environments with
under 5 items and attacker types. With more items and types,
the game does however become harder to solve, and runtime
grows quite significantly. We still find good solutions but the
algorithm takes much longer, which is not ideal. For real-life
scenarios where Inspecti-bot would need to solve and opti-
mize as fast as possible, this is not a great result. This has
lead us to reflect on whether or not game theoretic modeling
is the best way to represent an online security MAS scenario.
We are however excited about the potential applications of
game theoretic model, and will be monitoring this research
area with great interest!

Thank you!
Thank you for an awesome semester. It was a pleasure learn-
ing from you and we hope you enjoyed this report!

References
An, B., Tambem M. (2017). Game Theory for Security:
An Important Challenge for Multiagent Systems. European
Workshop on Multi-Agent Systems. (LNAI,volume 7541).

Kiekintveld, Christopher and Jain, Manish. (2017). Basic
Solution Concepts and Algorithms for Stackelberg Security
Games.(pp. 508-537).

Paruchuri, Praveen et al. (2008). Efficient Algorithms to
Solve Bayesian Stackelberg Games for Security Applica-
tions. 1559-1562.

Author contribution
Our team split did the initial research work as well as final
report reflections together, and we split up to each focus on
Python implementation and RoboMaker demonstration.

Emma: literature review, algorithm research, AWS Robo-
Maker/WorldForge demo, final report (motivation, related
work, problement statement, discussion)

Vinh: literature review, algorithm research, Python
implementation, code explanation, final report (abstract,
method, evaluation)


